
Web Question Answering
with Neurosymbolic Program Synthesis

Qiaochu Chen
University of Texas at Austin

Austin, Texas, USA
qchen@cs.utexas.edu

Aaron Lamoreaux
University of Texas at Austin

Austin, Texas, USA
lamoreauxaj@gmail.com

Xinyu Wang
University of Michigan

Ann Arbor, Michigan, USA
xwangsd@umich.edu

Greg Durrett
University of Texas at Austin

Austin, Texas, USA
gdurrett@cs.utexas.edu

Osbert Bastani
University of Pennsylvania

Philadelphia, Pennsylvania, USA
obastani@seas.upenn.edu

Isil Dillig
University of Texas at Austin

Austin, Texas, USA
isil@cs.utexas.edu

Abstract
In this paper, we propose a new technique based on program
synthesis for extracting information from webpages. Given
a natural language query and a few labeled webpages, our
method synthesizes a program that can be used to extract
similar types of information from other unlabeled webpages.
To handle websites with diverse structure, our approach em-
ploys a neurosymbolic DSL that incorporates both neural
NLP models as well as standard language constructs for tree
navigation and string manipulation. We also propose an opti-
mal synthesis algorithm that generates all DSL programs that
achieve optimal 𝐹1 score on the training examples. Our syn-
thesis technique is compositional, prunes the search space
by exploiting a monotonicity property of the DSL, and uses
transductive learning to select programs with good general-
ization power. We have implemented these ideas in a new
tool calledWebQA and evaluate it on 25 different tasks across
multiple domains. Our experiments show thatWebQA sig-
nificantly outperforms existing tools such as state-of-the-art
question answering models and wrapper induction systems.

CCS Concepts: • Software and its engineering→ Auto-
matic programming; • Information systems→ Data ex-
traction and integration.

Keywords: Program Synthesis, Programming by Example,
Web Information Extraction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00
https://doi.org/10.1145/3453483.3454047

ACM Reference Format:
Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Os-
bert Bastani, and Isil Dillig. 2021. Web Question Answering with
Neurosymbolic Program Synthesis. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI ’21), June 20–25, 2021, Virtual, Canada.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3453483.
3454047

1 Introduction
As the amount of information available on the web prolif-
erates, there is a growing need for tools that can extract
relevant information from websites. Due to the importance
of this problem, there has been a flurry of research activ-
ity on information extraction [39, 44] and wrapper induc-
tion [5, 10, 18, 27, 32, 37, 42, 50]. In particular, most recent
research from the natural language processing (NLP) com-
munity focuses on unstructured text documents and employs
powerful neural models to automate information extraction
and question answering (QA) tasks. On the other hand, most
wrapper induction work focuses on semi-structured docu-
ments and aims to synthesize programs (e.g., XPath queries)
to extract relevant nodes from the DOM tree. While such
wrapper induction techniques work well when the target
webpages have a shared global schema (e.g., Yelp pages or
LinkedIn profiles), they are not as effective on structurally
heterogeneous websites such as faculty webpages. On the
other hand, ML-based techniques from the NLP community
are, in principal, applicable to heterogeneous websites; how-
ever, by treating the entire webpage as unstructured text,
they fail to take advantage of the inherent tree structure of
HTML documents.
In this paper, we propose a new information extraction

approach —based on neurosymbolic program synthesis — that
combines the relative strengths of wrapper induction tech-
niques for webpages with the flexibility of neural models for
unstructured documents. Our approach targets structurally
heterogeneous websites with no shared global schema and

https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3453483.3454047

PLDI ’21, June 20–25, 2021, Virtual, Canada Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig

Program
Synthesizer

Transductive
Learning

Optimal
programs

Query

Labeled pages

Unlabeled pages

Answers
for each
webpage

“List of PhD
students”

Figure 1. Schematic overview of our approach

can be used to automate many different types of informa-
tion extraction tasks. Similar to prior program synthesis
approaches[37, 57], our approach can learn useful extractors
from a small number of labeled webpages.

As illustrated in Figure 1, our approach takes three inputs,
including (1) a natural language query, (2) a small number
of labeled webpages, and (3) a much bigger set of unlabeled
webpages from which to extract information. For instance,
if the task is to extract PhD students from faculty webpages,
the input might consist of a question such as “Who are the
PhD students?" as well as keywords like "advisees” and "PhD
students”. In addition, the user would also provide a set of
target faculty webpages, together with labels (i.e., names of
PhD students) for a few of these. Given this input, the goal
of our technique is to generate a program that can be used
to extract the desired information from all target webpages.
To solve this challenging problem, we employ a multi-

pronged solution that incorporates three key ingredients:
• Neurosymbolic DSL: To combine the relative strengths
of wrapper induction techniques with the flexibility of
language models, we design a new neurosymbolic domain-
specific language targeted for web question answering.
Our DSL combines pre-trained neural modules for natural
language processingwith standard programming language
constructs for string processing and tree traversal.
• Optimal program synthesis: To utilize this DSL for au-
tomated web information extraction, we describe a new
program synthesis technique for finding DSL programs
that best fit the labeled webpages. However, since it is
often impossible to find programs that exactly fit the pro-
vided labels, we instead search for programs that optimize
𝐹1 score1. Our proposed optimal synthesis method is com-
positional and leverages a monotonicity property of the
DSL to aggressively prune parts of the search space that
are guaranteed not to contain an optimal program.
• Transductive programselection:During synthesis, there
are oftenmany (e.g., hundreds of) DSL programs with opti-
mal 𝐹1 score on the labeled data. However, not all of these
candidate programs perform well on test data, and stan-
dard heuristics (e.g., based on program size) are not effec-
tive at distinguishing between these programs. We address

1 𝐹1 score is computed as 2 · precision·recall
precision+recall . It is a common evaluation

metric in information extraction.

this challenge using transductive learning: it generates soft
labels for the test data based on all candidate programs
and then chooses the “consensus” program whose output
most closely matches the soft labels.
We have implemented our proposed approach in a tool

called WebQA and evaluate it across several different tasks
and many webpages. Our evaluation demonstrates that We-
bQA yields significantly better results compared to existing
baselines, including both question answering models and
wrapper induction systems. We also perform ablation studies
to evaluate the relative importance of our proposed tech-
niques and show that all of these ideas are important for
making this approach practical.

In summary, this paper makes the following contributions:
• We propose a new technique for web question answering
that is based on optimal neurosymbolic program synthesis.
• We present a DSL for web information extraction that com-
bines pre-trained NLP models with traditional language
constructs for string manipulation and tree traversal.
• We describe a compositional program synthesis technique
for finding all programs that achieve optimal 𝐹1 score on
the labeled webpages. Our synthesis algorithm prunes the
search space by exploiting a monotonicity property of the
DSL with respect to recall.
• We present a transductive learning technique for choosing
a good program for labeling the target webpages.
• We implement our approach in a tool called WebQA and
evaluate it on 25 different tasks spanning four domains
and 160 webpages.

2 Motivating Example
In this section, we present a motivating scenario forWebQA
and highlight salient features of our approach.

Usage scenario. Suppose that the PC chair for a confer-
ence needs to form a program committee, and she has access
to the websites of many researchers. To help her form a
good committee, she wants to extract program committees
that each researcher has served on (which is often avail-
able on their websites). Since there are too many websites,
extracting this information manually is too laborious. Our
proposed system, WebQA, is useful in scenarios like this
that require collecting information from many structurally
heterogeneous websites.
To use WebQA, the user starts by providing a question

(e.g., “Which program committees has this researcher served
on?”) and a set of keywords (e.g., “PC”, “ProgramCommittee”,
“Service”). Then, given a target set of websites, WebQA asks
the user to provide labels for a small number of webpages. For
instance, Figure 2 presents two (hypothetical) websites that
WebQA may show to the user, with the user-provided labels
highlighted in blue. Observe that both of these webpages
are semi-structured in the sense that they contain clearly-
delineated sections (e.g., Students, Service); however, they

WebQuestion Answering with Neurosymbolic Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

Jane Doe
Some University

janedoe at univeristy.edu
+00 123-456-7890

Recent Publications
Synthesizing programs from examples. Jane Doe. PLDI 2018.

Students
PhD students

Robert Smith
Mary Anderson

Activities
Professional Services

Current: PLDI '21 (PC)
Past: CAV '20 (PC), PLDI '20 (SRC), POPL '20 (PC), CAV '19 (PC),
OOPSLA '19 (Workshop Chair), PLDI '19 (PC), POPL '19 (PC), PLDI '18
(SRC), CAV '18 (AEC)

Contact

Professor
Some University
Department of Computer Science
johndoe@somewhere.edu
(123) 456-7890

Research
Interests

My research interests are in programming languages.

Recent
News

Welcome incoming students Sarah Brown.

Two papers accepted to PLDI 2019.

Service
OOPSLA '20 (PC), POPL '20 (SRC), PLDI '20 (PC), CAV '19 (PC),
ASPLOS '19 (Workshop Chair), PLDI '19 (PC), ICSE '19 (PC), PLDI '18
(SRC), CAV '18 (AEC).

John Doe

Figure 2. Sample faculty websites with their program committee information.
Correct answers are in blue; the output of a QA model is underlined in red.

Professor
Department of Computer Science
Some University

Phone: +0 123 456 7890
E-mail: robertdoe@some.edu

ROBERT DOE

Robert Doe is a professor at Some University. His research focuses on programming
languages.

Teaching
CS 001: Introduction to Computer Science. Spring 2020
CS 010: Introduction to Data Structure. Fall 2019.

Professional Service
CAV '20 (Program Committee)
PLDI '20 (Program Committee)
POPL '20 (Artifact Evaluation Committee)
CAV '19 (Workshop Chair)
OOPSLA '19 (Program Committee)
PLDI '19 (Student Reseach Competition)

Figure 3. The synthesized program
also works on this website; high-
lighted text are the extracted output.

differ both in terms of their high-level structure and what
information they contain.

Limitations of existing approaches. We now use this
simple motivating example to illustrate why existing ap-
proaches are not effective for this type of tasks. Asmentioned
in Section 1, there are two classes of techniques, namely pro-
gram induction and question answering, that could potentially
be useful in this setting.

Like our approach, program induction techniques aim to
extract information from webpages based on a small num-
ber of user-provided training examples [35, 50]. Specifically,
given a few labeled webpages, these techniques learn XPath
expressions to locate relevant nodes in the DOM tree. How-
ever, as illustrated in Figure 2, researcher webpages typically
do not have a uniform structure. Furthermore, even for web-
pages that are structurally somewhat similar, they exhibit
minor variations (e.g., different section names, relative or-
dering of sections etc.) that make it very difficult to learn
XPath expressions that generalize well to unseen websites.
In addition, almost all existing techniques in this space focus
on extracting relevant nodes in the DOM tree; however, they
do not attempt to perform any further text processing within
that node. As illustrated by both webpages in Figure 2, ex-
tracting the desired information requires further processing
at the text level, such as extracting relevant substrings.

An alternative approach for automating this task is to use
a state-of-the-art question answering (QA) system that treats
the entire webpage as a raw sequence of words. However, in
practice, such approaches perform poorly since they are not
designed to leverage the tree structure of the document. Fur-
thermore, because they treat text across different DOMnodes
as natural language, they have difficulty dealing with more
structured information like long comma-delineated lists or
formatting with parentheticals. For instance, for the two
webpages from Figure 2 and the question “Which program
committees has this researcher served on?”, a BERT-based
QA system [19] yields the suboptimal answers underlined
in red in Figure 2. In particular, it either outputs incorrect

spans or includes text that should not be part of the answer
(e.g. “POPL’20 (SRC)” in the second webpage).

Key idea #1: Neurosymbolic DSL. Our approach com-
bines the relative strengths of machine learning and pro-
gram induction techniques by synthesizing programs in a
neurosymbolic DSL for web information extraction. In par-
ticular, our proposed DSL incorporates both pre-trained neu-
ral models for question answering, keyword matching, and
entity extraction with standard programming language con-
structs for string processing and tree navigation. The tree
navigation constructs allow taking advantage of webpage
structure, while making it possible to handle minor varia-
tions (e.g., exact section names) using pre-trained neural
models. Furthermore, the presence of string processing con-
structs in the DSL allows our method to extract fine-grained
information within individual tree nodes.

In more detail, a program in our DSL is structured to first
locate relevant nodes in the tree representation of a web-
page (see Figure 4) and then perform additional information
extraction from each tree node. For example, the following
code snippet in our DSL can be used to locate the relevant
parts of the webpages from Figure 2:

GetLeaves(GetDescendents(𝑟, _𝑧.matchKeyword(𝑧, 𝐾))) (1)

Here, 𝑟 is the root node of the input webpage, and the con-
struct GetDescendants(𝑟, 𝜙) returns all tree nodes whose
content satisfies predicate 𝜙 . In the code snippet above, the
predicate _𝑧.matchKeyword(𝑧, 𝐾) is implemented by a neu-
ral network that has been pre-trained for keyword matching.
Thus, this program first locates all tree nodes whose content
matches any of the provided keywords 𝐾 and returns all of
their leaf nodes. For example, given the tree in Figure 4 repre-
senting the top webpage from Figure 2, the GetDescendants
sub-program will match node 11, and GetLeaves2 will re-
turn nodes 14 and 15, which are leaf nodes of the subtree

2Actually, there is no explicit GetLeaves(v) construct in our DSL; this is
just syntactic sugar for GetDescendants(v, _ n. isLeaf(n)).

PLDI ’21, June 20–25, 2021, Virtual, Canada Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig

0, none
Jane Doe

… 6, none
Students

10, none
Activities

8, none
Robert Smith

9, none
Mary Anderson

11, list
Professional Service

12, none
Current:

13, none
Past:

14, none
PLDI ’21 (PC)

15, none
CAV ’20 (PC), …

7, list
PhD students

Figure 4. Tree representation of top webpage from Figure 2.
Each node contains the node id, type and its content.

rooted at node 11. For the webpages in Figure 2, this program
yields the tree nodes annotated using black boxes.
Next, given the tree nodes returned by the above code

snippet, we can extract the desired information from these
nodes using the following code snippet in our DSL:
_𝑥 .GetEntity(Filter(Split(ExtractContent(𝑥), COMMA),

_𝑧.matchKeyword(𝑧, 𝐾)), ORG) (2)

In particular, this code snippet first retrieves the content of
tree node 𝑥 using ExtractContent and then splits it into a
set of (comma-separated) strings using Split. Then, it filters
those elements that do not match the provided keywords and
finally extracts substrings that correspond to an organization
entity3. Thus, assuming sufficiently good neural models for
keyword matching and entity recognition, the output of
this program would be exactly the highlighted text for the
webpages from Figure 2.

It is worth noting that the extraction logic described above
generalizes fairly well across websites with quite different
layouts. In particular, the same DSL program can be used to
extract the desired information from Figure 3 even though
this webpage looks quite different from those in Figure 2.

Key idea #2: Allowing imperfect solutions. In our ex-
ample so far, we were able to find a DSL program that pro-
duces exactly the highlighted text from examples in Figure 2.
However, suppose that the pre-trained network for entity
extraction is unable to recognize computer science confer-
ence names as organizations. In that case, the output of the
extraction program from Eq. 2 would not exactly match the
user-provided labels. In fact, there is no program in our DSL
that would produce exactly the desired output.

To deal with this difficulty, our synthesis algorithm aims to
find programs that maximize 𝐹1 score rather than looking for
solutions that exactly match the user-provided labels. Thus,
we frame our problem as optimal program synthesis, where
the goal is to find programs that maximize some optimization
3Note that there is no explicit GetEntity on our DSL; this is a syntactic
sugar for Substring(𝑒, _𝑧.hasEntity(𝑧, ORG), 1) .

objective (𝐹1 score in our case). This optimality requirement
makes the synthesis problem harder because we need to
exhaustively explore the search space.

Key idea #3: Transductive learning. An additional dif-
ficulty in our context is that there may be hundreds or even
thousands of optimal solutions for a synthesis task. In partic-
ular, given the scarcity of training examples, many different
DSL programs yield the same 𝐹1 score on the labeled web-
pages. For instance, for the two webpages from Figure 2,
there are actually 85 optimal DSL programs that achieve the
same 𝐹1 score. Existing techniques in the synthesis literature
deal with the under-constrained nature of input-output ex-
amples by using heuristics to distinguish different candidate
solutions. However, standard heuristics (e.g., based on AST
size) do not work well in our setting because there are still
many programs that are tied with respect to such heuristics.

Our approach deals with this challenge using transductive
learning. In particular, given all programs that yield optimal
𝐹1 score on the labeled data, it generates soft labels for unla-
beled webpages by running these programs on the unlabeled
webpages and aggregating their outputs. Then, among these
programs, we choose the one whose outputs most closely
match the soft labels for the unlabeled webpages. In other
words, transductive learning allows our method to utilize
the unlabeled data to choose a most promising program and
obviates the need for complex hand-crafted heuristics.

3 Preliminaries
In this section, we discuss how we represent webpages as
trees. Our representation is different from the standard Doc-
ument Object Model (DOM) and represents the nesting rela-
tionship between text elements on the rendered webpage to
better facilitate web question answering.

Definition 3.1. (Webpage) A webpage is a tree (𝑁, 𝐸, 𝑛0)
with root node 𝑛0 ∈ 𝑁 , nodes 𝑁 and edges 𝐸. An edge is
a pair (𝑛, 𝑛′) where 𝑛 is the parent of 𝑛′, and each node is
a triple (id, text, type) where text is the string content of
that node and type ∈ {list, table, none} indicates whether the
node corresponds to an HTML list, table, or neither.

Intuitively, an edge (𝑛, 𝑛′) indicates that the text of node
𝑛 is the header for that of node 𝑛′ — i.e., text of 𝑛′ is nested
inside that of 𝑛 on the rendered version of the webpage.
For instance, given an HTML document with title “Title"
and body text “Text", our representation introduces an edge
(𝑛, 𝑛′) where 𝑛 has text “Title” and 𝑛′ contains “Text".
In our representation, internal nodes can represent struc-

tured HTML elements like lists (both ordered and unordered)
as well as tables. For a node 𝑛 representing an HTML list
(resp. table), 𝑛’s children correspond to elements in the list
(resp. rows of the table).

Example 3.2. Our method represents the first webpage in
Figure 2 as the tree shown in Figure 4.

WebQuestion Answering with Neurosymbolic Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

Program 𝑝 ::= _𝑄,𝐾,𝑊 .{𝜓1 → _𝑥.𝑒1, . . . ,𝜓𝑛 → _𝑥.𝑒𝑛 }
Guard𝜓 ::= Sat(a, _𝑧.𝜙) | IsSingleton(a)

Extractor 𝑒 ::= ExtractContent(𝑥)
| Substring(𝑒, _𝑧.𝜙, 𝑘)
| Filter(𝑒, _𝑧.𝜙)
| Split(𝑒, 𝑐)

Section locator a ::= GetRoot(𝑊)
| GetChildren(a, _𝑛.𝜑)
| GetDescendants(a, _𝑛.𝜑)

Node filter 𝜑 ::= isLeaf(𝑛) | isElem(𝑛)
| matchText(𝑛, _𝑧.𝜙,𝑏)
| ⊤ | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ¬𝜑

NLP predicate 𝜙 ::= matchKeyword(𝑧, 𝐾, 𝑡)
| hasAnswer(𝑧,𝑄)
| hasEntity(𝑧, 𝑙)
| ⊤ | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙

Figure 5. DSL for WebQA. Here, 𝑐 denotes a character (e.g.,
a delimiter like comma), and 𝑙 is an entity type (e.g. Person).
Also, 𝑘 ∈ Z, 𝑏 is a boolean, 𝑡 ∈ [0, 1] is a threshold.
4 DSL for Web Question Answering
In this section, we describe our domain-specific language
called WebQA for web information extraction. At a high
level, this DSL combines pre-trained neural models for stan-
dard NLP tasks (i.e., question answering, entity extraction,
and keyword matching) with symbolic constructs for ma-
nipulating strings and navigating the tree structure of the
webpage. As shown in Figure 5, a program in this DSL takes
as input a question𝑄 , keyword(s)𝐾 , and a webpage𝑊 , and it
returns a set of strings that collectively answer the question.

As shown in Figure 5, eachWebQA program is a sequence
of guarded expressions of the form 𝜓𝑖 → _𝑥.𝑒𝑖 where the
guard 𝜓𝑖 locates relevant tree nodes and checks whether
they satisfy some property, and the extractor takes as input
a set of tree nodes (computed by the guard) and returns a set
of strings (see Figure 6 for their types). The program returns
the result of expression 𝑒𝑖 if the corresponding guard 𝜓𝑖 is
true and all previous guards 𝜓1, . . . ,𝜓𝑖−1 evaluate to false.
Intuitively, the guards are used to determine the webpage
“schema” and locate the relevant tree nodes from which to
extract information. Then, the corresponding expression 𝑒𝑖
extracts the relevant text from those nodes.

In more detail, guards𝜓 in a WebQA program locate the
relevant sections 𝑁 of the webpage using so-called section
locators and check whether nodes 𝑁 satisfy some predicate.
If they do, the located sections 𝑁 are bound to variable 𝑥 of
the corresponding extractor expression 𝑒 , and the result of
evaluating 𝑒 on 𝑁 is returned. On the other hand, if a guard
evaluates to false, then the next guard is evaluated, and this
process continues until one of the guards evaluates to true. If
all guards evaluate to false, the return value of the program
is ∅. Next, we explain the WebQA constructs in more detail.

Pre-trained NLP Models. Our DSL contains three pre-
trained neural models for extracting information from web-
pages. These pre-trained models are used inside predicates
𝜙 and include the following primitives:

𝑝 :: Question × Keywords × Webpage→ Set<String>
𝜓 :: Bool × Set<Node>
𝑒 :: Set<String> 𝑧 :: String
𝑥 :: Set<Node> 𝑛 :: Node
a :: Set<Node> 𝜑,𝜙 :: Bool

Figure 6. Types of different symbols in theWebQA grammar

• Keywordmatch:Given string 𝑧, the matchKeyword(𝑧, 𝐾, 𝑡)
predicate evaluates to true if the semantic similarity be-
tween 𝑧 and keyword 𝑘 exceeds threshold 𝑡 ∈ [0, 1] for
some keyword 𝑘 ∈ 𝐾 .
• Question answering: The hasAnswer(𝑧,𝑄) predicate re-
turns true if a pre-trained neural network for textual ques-
tion answering can find the answer to the given question
𝑄 in input string 𝑧.
• Entity matching: Given string 𝑧, hasEntity(𝑧, 𝑙) returns
true if a neural model for entity matching decides that 𝑧
contains an entity of type 𝑙 (e.g., person, location).

These neural primitives draw on standard NLP modeling
tools for each of their respective tasks. By using standard
tools, we can exploit not only pre-trained vectors [47] and
models such as BERT [19], but we can take advantage of
training sets created for other tasks like question answer-
ing [49]. This design choice allows us to leverage neural
components despite the lack of substantial training data.

Section locators. OurWebQADSL includes so-called sec-
tion locator constructs a for identifying tree nodes from
which to extract information. Section locators allow nav-
igating the tree structure and identifying nodes that sat-
isfy a given predicate. In particular, given a webpage 𝑊 ,
getRoot(𝑊) returns the root node of the webpage, and the
recursive getChildren and getDescendants constructs re-
turn respectively the children and descendant nodes satisfy-
ing a certain predicate 𝜑 . Predicates on nodes allow test-
ing whether a given node is a leaf (isLeaf), whether it
is a list/table element (isElem), or whether the text con-
tained in that node matches NLP predicate 𝜙 (matchText).
Note that the third boolean argument of matchText specifies
whether to consider only text within that node (𝑏 = false) or
whether to consider the text in the entire subtree (𝑏 = true).

Guards. Asmentioned earlier, guards in our DSL are used
for locating relevant sections within a webpage and testing
their properties. In particular, a guard𝜓 uses section locators
to identify relevant nodes 𝑁 and then checks their properties
via the IsSingleton and Sat predicates. As its name indi-
cates, IsSingleton tests whether 𝑁 contains a single node.
Intuitively, this predicate is useful because existing textual
question answering systems like hasAnswer are more likely
to be effective if the desired information can be found within
a single block of text. On the other hand, the Sat predicate
is used to test whether any of the nodes 𝑛 ∈ 𝑁 satisfy some
neural classifier 𝜙 — i.e., Sat(𝑁, _𝑧.𝜙) checks whether text
𝑧 of node 𝑛 satisfies 𝜙 for some 𝑛 ∈ 𝑁 .

PLDI ’21, June 20–25, 2021, Virtual, Canada Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig

1: procedure Synthesize(E, 𝑄, 𝐾)
input: training examples E, question 𝑄 , and keywords 𝐾 .
output: all WebQA programs with optimal 𝐹1 score.

2: 𝑅 ← ⊥; 𝑜𝑝𝑡 ← 0;
3: for all 𝑃 ∈ Partitions(E) do
4: 𝑏𝑠 ← [];
5: for all E𝑖 ∈ 𝑃 do
6: 𝐵 ← SynthesizeBranch(E𝑖 , 𝑃 \ ∪𝑖𝑗=1E 𝑗 , 𝑄, 𝐾);
7: bs.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐵);
8: if 𝐹1 (𝑏𝑠, E) > 𝑜𝑝𝑡 then
9: 𝑜𝑝𝑡 = 𝐹1 (𝑏𝑠, E); 𝑅 ← {𝑏𝑠};
10: else if 𝐹1 (𝑏𝑠, E) = 𝑜𝑝𝑡 then
11: 𝑅 ← 𝑅 ∪ {𝑏𝑠};
12: return 𝑅;

Figure 7. Top-level synthesis algorithm.

Extractors. The extractor constructs are used to extract
text from relevant sections 𝑁 of a webpage. Note that these
relevant sections are determined by the corresponding guard
and bound to variable 𝑥 referenced in the extraction con-
struct. In the simplest case, the ExtractContent function
returns the string content of each node𝑛 ∈ 𝑁 . The remaining
constructs are recursive and allow (a) extracting substrings,
(b) filtering elements from a set, and (c) splitting a string into
multiple strings. In particular, Substring(𝑛, _𝑧.𝜙, 𝑘) returns
the top-k substrings satisfying neural classifier 𝜙 on 𝑛’s con-
tents. Similarly, Filter(𝑁, _𝑧.𝜙) filters those nodes 𝑛 whose
content does not satisfy 𝜙 from set 𝑁 . Finally, Split(𝑛, 𝑐)
generates multiple new substrings by splitting 𝑛’s content
based on the provided delimiter 𝑐 (e.g., comma).

5 Optimal Neurosymbolic Synthesis
In this section, we describe our algorithm for synthesizing
all programs that achieve optimal 𝐹1 score on a given set
of training examples. At a high level, our method is based
on enumerative search but employs two ideas that allow it
to scale better: First, we decompose the task of synthesizing
extractors from that of synthesizing guards; this decomposi-
tion significantly reduces the space of programs we need to
consider. Second, we exploit a certain monotonicity property
of our DSL to prune programs that are guaranteed to be
sub-optimal in terms of their 𝐹1 score.

Our top-level synthesis algorithm is presented in Figure 7.
Given a few training examples E, a question 𝑄 , and key-
words 𝐾 , Synthesize returns a set of programs that achieve
optimal 𝐹1 score on E. At a high level, the algorithm consid-
ers all possible ways of partitioning the training examples
and synthesizes optimal programs for each partition.4 In-
tuitively, each partition corresponds to a different way of
assigning guards to webpages in the training set, and the
overall synthesis algorithm chooses a partition that yields
the best 𝐹1 score among all partitions.

4Since our technique only requires a small set of labeled examples, consid-
ering all partitions of E is computationally tractable.

In more detail, the Synthesize procedure works as fol-
lows. It first generates all possible partitions of the training
examples, and then, for each partition 𝑃 = [E1, . . . , E𝑛], it
generates a set of (optimal) programs of the form:

𝜓1 → _𝑥 .𝑒1, . . . ,𝜓𝑛 → _𝑥.𝑒𝑛

such that examples E𝑖 satisfy the 𝑖’th guard𝜓𝑖 and the cor-
responding extractor 𝑒𝑖 achieves optimal 𝐹1 score for E𝑖 . We
represent the set of optimal programs for partition 𝑃 as a list
𝑏𝑠 = [𝐵1, . . . , 𝐵𝑛], where each 𝐵𝑖 represents an optimal set
of programs for the 𝑖’th branch.
In particular, a branch program 𝑏 ∈ 𝐵𝑖 is a pair (𝜓, 𝑒) con-

sisting of a guard and an extractor, and we represent a set
of branch programs as a mapping 𝐵𝑖 from guards to a set of
extractors 𝐸. Thus, 𝐵𝑖 represents all branch programs (𝜓, 𝑒)
satisfying the following three properties:
1. The guard𝜓 evaluates to true for all examples in E𝑖 .
2. The guard𝜓 evaluates to false for E\(E1 ∪ . . . ∪ E𝑖).5
3. The extractor 𝑒 achieves optimal 𝐹1 score for examples E𝑖 .

Synthesizing branch programs. Next, we consider the
SynthesizeBranch procedure (Figure 8) for generating op-
timal branch programs for a given set of examples. As men-
tioned earlier, there are two important ideas underlying this
algorithm: First, we decompose the branch synthesis problem
into two separate sub-problems (one for synthesizing guards,
and one for synthesizing extractors). Second, we prune the
search space by inferring an upper bound on the optimal 𝐹1
score that can be achieved by partial branch programs.
In more detail, the SynthesizeBranch procedure works

as follows. For a given set of positive examples E+ and nega-
tive examples E−, it first synthesizes a guard𝜓 that separates
E+ from E− (line 4) and then generates the set of all optimal
extractors using𝜓 (line 8). Note that there may be multiple
guards in our DSL that distinguish E+ from E−. While our
algorithm considers all possible guards (loop in lines 3–12),
it does so lazily — i.e., it only synthesizes the next guard
after synthesizing optimal extractors for the previous guards.
As we will see shortly, such lazy enumeration strategy is
useful because it improves the pruning power of the guard
synthesis algorithm.
Now, let us consider each iteration of loop in lines 3–12.

First, given a guard 𝜓 separating E+ and E− (line 4), our
technique infers an upper bound on the 𝐹1 score of any branch
program using𝜓 as its guard. In particular, we can do this
because the extractors in our DSL aremonotonic with respect
to recall: If extractor 𝑒 ′ appears as a sub-expression of 𝑒 , then
the recall that can be achieved by extractor 𝑒 cannot be more
than that of 𝑒 ′. Furthermore, since the extractor operates
over the tree nodes 𝑁 returned by its corresponding guard,
the recall can only decrease with respect to 𝑁 ’s contents.
5Since a guard is only evaluated if previous guards evaluate to false, we
only require𝜓 to differentiate between the current set of examples and the
examples that have not yet been considered.

WebQuestion Answering with Neurosymbolic Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

1: procedure SynthesizeBranch(E+, E−, 𝑄, 𝐾)
input: Pos/neg examples E+, E−; question 𝑄 ; keywords 𝐾
output: Branch programs represented as a mapping 𝑅 from
guards to extractors such that for each (𝜓, 𝐸) ∈ 𝑅 (1)𝜓 classifies
E+, E− and (2) 𝐸 achieves maximum 𝐹1 score for E+.

2: 𝑅 ← ⊥; 𝑜𝑝𝑡 ← 0;
3: while true do
4: 𝜓 ← GetNextGuard(E+, E−, 𝑄, 𝐾, 𝑜𝑝𝑡);
5: if 𝜓 = ⊥ then break;
6: if UB(𝜓 .a, E+) < 𝑜𝑝𝑡 then continue;
7: E ′ ← PropogateExamples(E+,𝜓,𝑄, 𝐾);
8: (𝐸,F1)← SynthesizeExtractors(E ′, 𝑄, 𝐾, 𝑜𝑝𝑡);
9: if 𝐹1 > 𝑜𝑝𝑡 then
10: 𝑜𝑝𝑡 ← 𝐹1; 𝑅 ← {(𝜓, 𝐸)};
11: else if 𝐹1 = 𝑜𝑝𝑡 then
12: 𝑅 [𝜓] ← 𝐸

13: return R

Figure 8. Algorithm for synthesizing branch programs.

Our algorithm uses this observation at line 6 of Synthe-
sizeBranch by using the UB function for computing an
upper bound on branch programs using guard𝜓 . In partic-
ular, let a denote the section locator used in guard𝜓 . Then,
we can obtain an upper bound for any branch program over
𝜓 using the following formula:

UB(a, E) = 2 · Recall(a, E)
1 + Recall(a, E) (3)

where Recall(a, E) for a section locator a and examples E is
defined as follows:
{𝑡 | 𝑡 ∈ ExtractContent(a (𝑊)),𝑊 ∈ Ein} ∩ {𝑡 | 𝑡 ∈ Eout}

{𝑡 | 𝑡 ∈ Eout}
where 𝑡 represents a token.

That is, our upper bound computation assumes maximum
possible precision (i.e., 1) and maximum recall for any ex-
tractor using section locator a . Since UB(a) gives an upper
bound on the 𝐹1 score of any branch program with guard𝜓 ,
we do not need to consider extractors for𝜓 if UB(a) is less
than the maximum 𝐹1 score encountered so far (line 6).
Assuming 𝜓 is not provably sub-optimal, Synthesize-

Branch proceeds to construct optimal extractors for the
synthesized guard 𝜓 (lines 7–12). To decompose extractor
synthesis from guard inference, we first compute separate
input-output examples for the extractor by calling Propaga-
teExamples at line 7. In particular, this procedure executes
the synthesized section locator a on the input webpages to
obtain new input-output examples E ′ for the extractor and
invokes SynthesizeExtractors on E ′. Finally, if the branch
programs associated with guard 𝜓 improve upon (or yield
the same) 𝐹1 score, the result set 𝑅 is updated.6

6Since branches that use guards with the same section locator have the
same set of optimal extractors, the calls to SynthesizeExtractors can
be memoized across different iterations within the SynthesizeBranch
procedure. We omit this to simplify presentation.

1: procedure SynthesizeExtractors(E, 𝑄, 𝐾, 𝑜𝑝𝑡)
input: Examples E;question 𝑄 ; keywords 𝐾
input: Lower bound 𝑜𝑝𝑡 on 𝐹1
output: Extractors 𝐸𝑜 with optimal 𝐹1 score 𝑠𝑜 on E.

2: 𝐸𝑜 ← ∅; 𝑠𝑜 ← 𝑜𝑝𝑡 ;
3: W ← {ExtractContent(𝑥)};
4: whileW ≠ ∅ do
5: 𝑒 ←W .𝑟𝑒𝑚𝑜𝑣𝑒 (); 𝑠 ← 𝐹1 (𝑒, E);
6: if 𝑠 > 𝑠𝑜 then 𝐸𝑜 ← {𝑒}; 𝑠𝑜 ← 𝑠;
7: else if 𝑠 = 𝑠𝑜 then 𝐸𝑜 .𝑎𝑑𝑑 (𝑒);
8: for all 𝑒 ′ ∈ ApplyProduction(𝑒) do
9: if UB(𝑒 ′, E) ≥ 𝑠𝑜 thenW .𝑎𝑑𝑑 (𝑒 ′);
10: return (𝐸𝑜 , 𝑠𝑜);

Figure 9. Optimal extractor synthesis.

Extractor synthesis. Next, we describe the Synthesize-
Extractors procedure (Figure 9) for finding extractors with
optimal 𝐹1 score for a given set of input-output examples.
This procedure uses bottom-up enumeration with pruning
based on 𝐹1 scores to reduce the search space. In particu-
lar, we use bottom-up rather than top-down enumeration
because doing so allows us to more easily exploit the mono-
tonicity property of the DSL with respect to recall.

In more detail, SynthesizeExtractorsmaintains a work-
listW of complete extractors; and, in each iteration, it de-
queues one extractor and expands it by applying all possible
grammar productions for Substring, Filter, and Split
(line 8). A new extractor 𝑒 ′ is added to the worklist only if
UB(𝑒 ′, E) (i.e., 𝐹1 score upper bound for 𝑒 ′) is greater than or
equal to the previous upper bound 𝑠𝑜 (line 9). As described
earlier, we compute an upper bound on extractors gener-
ated from 𝑒 ′ by using 1 for precision and the recall of 𝑒 ′
on the given set of examples. As before, this pruning strat-
egy exploits the fact that if 𝑒1 is a subprogram of 𝑒2, then
Recall(𝑒1, E) ≥ Recall(𝑒2, E) for any set of examples E.

Lazy synthesis of guards. The final missing piece of our
synthesis algorithm is the GetNextGuard procedure (Fig-
ure 10) for lazy guard synthesis. In particular, this algorithm
is lazy in the sense that it yields a single guard at a time
rather than returning the set of all guards separating E+
from E−. Since the guard synthesis algorithm also prunes its
search space by computing an upper bound on 𝐹1 scores, this
lazy enumeration strategy improves pruning power as the
optimal 𝐹1 score improves over time. However, despite the
lazy nature of the guard synthesis algorithm, our technique
is still guaranteed to return all optimal programs.

The guard synthesis algorithm (Figure 10) is similar to Syn-
thesizeExtractors and also performs bottom-up search
with pruning. In particular, it maintains a worklistW of
section locators. In each iteration, it dequeues one of the
section locators a and generates all possible guards using
a (up to some bound). If any of the resulting guards 𝜓 is a
classifier between E+ and E−, then it is returned as the next

WebQuestion Answering with Neurosymbolic Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

to represent structure in images [22, 59] and reinforcement
learning policies [2, 34]. Overall, existing approaches largely
focus on simultaneously learning the program structure and
the DNN parameters. Hence, they are limited to very simple
programs and neural components, as they need to optimize
neural network parameters using backpropagation. In con-
trast, our work is designed to incorporate state-of-the-art
DNNs such as BERT, which take significant time to train. In
addition, we search over tens of thousands of programs by
relying on pretrained DNN models and by developing novel
deduction techniques for optimal synthesis.

Multi-modal program synthesis. There has been grow-
ing interest in program synthesis from multiple modalities
of specifications. For instance, several works have used a
combination of natural language and input-output examples
to synthesize regular expressions, data wrangling and string
manipulation programs, SQL queries, and temporal logic
formulas [6, 14, 16, 26, 51]. Our technique can also be viewed
as an instance of multi-modal synthesis that is based on a
neurosymbolic programming language.

10 Conclusion
We have presentedWebQA, a new synthesis-powered sys-
tem for extracting information from webpages. We have
evaluated WebQA on 25 different tasks spanning four dif-
ferent domains and 160 different webpages and show that
WebQA significantly outperforms competing approaches in
terms of 𝐹1 score, precision, and recall.

Acknowledgments
We thank our shepherd Uri Alon as well as our anonymous
reviewers andmembers of the UToPiA group for their helpful
feedback. This material is based upon work supported by the
National Science Foundation under Grant No. CCF-1811865,
Grant No. CCF-1762299 and Grant No. CCF-1918889.

A Detailed Derivation of Section 6
In this section, we describe in more detail how we derive
Eq. 9 from Eq. 4, including the key step Eq. 6.

Assumptions. Weassume the standard probabilisticmodel
from the semi-supervised learning literature [60]:

𝑝 (𝑖, 𝑜, 𝜋) = 𝑝 (𝑜 | 𝜋, 𝑖) · 𝑝 (𝜋) · 𝑝 (𝑖),

where 𝑖 is an input, 𝑜 is an output, and 𝜋 is a program. In
addition, we assume that

𝑝 (𝑜 | 𝜋, 𝑖) = 1(𝑜 = 𝜋 ′(𝑖))
𝑝 (𝜋) = |Π |−1,

where Π is the space of all possible programs (which is finite
since we consider programs of bounded depth). In other
words, we assume 𝑝 (𝑜 | 𝜋, 𝑖) is only non-zero when 𝑜 is the
output of 𝜋 . Next, we note that 𝑝 (𝑖) is the data distribution, so
we do not need to model it. In addition, we also assume that

two different examples (𝑖, 𝑜) and (𝑖 ′, 𝑜 ′) are conditionally
independent given 𝜋—i.e.,

𝑝 (𝑖, 𝑜, 𝑖 ′, 𝑜 ′, 𝜋) = 𝑝 (𝑜 | 𝜋, 𝑖) · 𝑝 (𝑜 ′ | 𝜋, 𝑖 ′) · 𝑝 (𝜋) .

Finally, we let Π∗ denote the set of programs that are correct
for all examples (𝑖 ′, 𝑜 ′) ∈ E—i.e.,

Π∗ = {𝜋 ∈ Π | ∀(𝑖 ′, 𝑜 ′) ∈ E . 𝑜 ′ = 𝜋 (𝑖 ′)}.

In practice Π∗ may be empty (i.e., if there are no programs
that satisfy all the given examples (𝑖 ′, 𝑜 ′) ∈ E), so we ap-
proximate it using the set of programs that achieve optimal
loss (e.g., according to the 𝐹1 score). This set might be very
large, so we additionally approximate it using samples Π𝐸 .
This approximation is implicitly used in Section 6.

Theoretical analysis. We show the following result:

Theorem A.1. Letting

�̃�(𝜋 ; E,I) =
∑
O
𝑝 (O | I, E) · 𝐿(𝜋 ;I,O),

then

�̃�(𝜋 ; E,I) = 1
N

N∑
𝑗=1

𝐿(𝜋 ;I,O𝑗), (11)

where N = |Π∗ |, and where
O𝑗 = (𝜋 𝑗 (𝑖1), ..., 𝜋 𝑗 (𝑖𝐾)) (∀𝜋 𝑗 ∈ Π∗) .

We note that Eq. 11 is identical to Eq. 9, except in Eq. 9
we have taken Π∗ to be the set of programs with optimal
𝐹1 score on E, and have furthermore approximated this set
using samples Π𝐸 from Π∗.

Proof. First, by our conditional independence assumption,
given program 𝜋 , unlabeled input examples I, candidate
output labels O, and labeled examples E, we have
𝑝 (I,O, E, 𝜋)
= 𝑝 (O, 𝜋 | I) · 𝑝 (I) · 𝑝 (E | 𝜋) · 𝑝 (𝜋)

=

(
𝐾∏
𝑘=1

𝑝 (𝑜𝑘 | 𝜋, 𝑖𝑘) · 𝑝 (𝑖𝑘)
)
·
(
𝐻∏
ℎ=1

𝑝 (𝑜 ′
ℎ
| 𝜋, 𝑖 ′

ℎ
) · 𝑝 (𝑖 ′

ℎ
)
)
· 𝑝 (𝜋),

where I = (𝑖1, ..., 𝑖𝐾), O = (𝑜1, ..., 𝑜𝐾), and E = (I ′,O ′), and
where I ′ = (𝑖 ′1, ..., 𝑖 ′𝐻), and O ′ = (𝑜 ′1, ..., 𝑜 ′𝐻). In other words,
E is conditionally independent of (I,O) given 𝜋 .
Now, we proceed with our proof. First, by the law of total

probability, we have

𝑝 (O | I, E) =
∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | I, E) · 𝑝 (O | 𝜋 ′,I, E). (12)

To simplify Eq. 12, we show that 𝑝 (O | I, E, 𝜋 ′) = 𝑝 (O |
I, 𝜋 ′), and that 𝑝 (𝜋 ′ | I, E) = 𝑝 (𝜋 ′ | E). First, to show the
former, note that

𝑝 (𝜋 ′ | I, E) = 𝑝 (I, E | 𝜋 ′) · 𝑝 (𝜋 ′)
𝑝 (I, E) =

𝑝 (I) · 𝑝 (E | 𝜋 ′) · 𝑝 (𝜋 ′)
𝑝 (I) · 𝑝 (E)

=
𝑝 (E | 𝜋 ′) · 𝑝 (𝜋 ′)

𝑝 (E) = 𝑝 (𝜋 ′ | E).

PLDI ’21, June 20–25, 2021, Virtual, Canada Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig

Similarly, to show the latter, we have

𝑝 (O | I, E, 𝜋 ′) = 𝑝 (O, E,I, 𝜋 ′)
𝑝 (I, E, 𝜋 ′)

=
𝑝 (O | I, 𝜋 ′) · 𝑝 (I) · 𝑝 (E, 𝜋 ′)

𝑝 (I) · 𝑝 (E, 𝜋 ′) = 𝑝 (O | I, 𝜋 ′) .

Thus, plugging into Eq. 12, we have

𝑝 (O | I, E) =
∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | E) · 𝑝 (O | 𝜋 ′,I) .

Note that this equation is identical to Eq. 6. Next, by defini-
tion of 𝑝 (𝑜 | 𝜋, 𝑖), we have

𝑝 (O | I, 𝜋 ′) =
𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘)),

so it follows that

𝑝 (O | I, E) =
∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | E) ·
𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘)) . (13)

It remains to compute 𝑝 (𝜋 ′ | E). To this end, we have

𝑝 (𝜋 ′ | E) = 𝑝 (I ′,O′, 𝜋 ′)
𝑝 (E) =

𝑝 (O′ | 𝜋 ′,I ′) · 𝑝 (𝜋 ′) · 𝑝 (I)
𝑝 (E)

=

(∏𝐻
ℎ=1 1(𝑜

′
ℎ
= 𝜋 ′(𝑖 ′

ℎ
))

)
· 𝑝 (I)

|Π | · 𝑝 (E) =
1(𝜋 ′ ∈ Π∗) · 𝑝 (I)
|Π∗ | · |Π | · 𝑝 (E) .

Thus, letting N = |Π | · |Π∗ | · 𝑝 (E)/𝑝 (I), we have

𝑝 (𝜋 ′ | E) = 1(𝜋 ′ ∈ Π∗)
N . (14)

Note that since
∑
𝜋 ′∈Π 𝑝 (𝜋 ′ | E) = 1, we must haveN = |Π∗ |.

Plugging Eq. 14 into Eq. 13, we have

𝑝 (O | I, E) = 1
N

∑
𝜋 ′∈Π∗

𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘)) .

The remaining steps follow Section 6. In particular, by the
definition of O𝑗 , we have

𝑝 (O | I, E) = 1
N

N∑
𝑗=1

1(O = O𝑗),

from which it follows that

�̃�(𝜋 ;E,I) =
∑
O
𝑝 (O | I, E) · 𝐿(𝜋 ;I,O) = 1

N

N∑
𝑗=1

𝐿(𝜋 ;I,O𝑗),

as claimed. □

B Additional ablation studies
To help readers better understand the design choices behind
WebQA, we present additional ablation studies evaluating
the impact of the different input modalities used by WebQA
as well as its sensitivity to the number of labeled webpages.

Faculty Conference Class Clinic
0

0.2

0.4

0.6

0.8

Av
g
𝐹
1

WebQA-NL WebQA-KW WebQA

Figure 13. Comparison be-
tweenWebQA and its variants

1 2 3 4 5

0.2

0.4

0.6

0.8

1

of examples

𝐹
1
sc
or
e

conf𝑡1 conf𝑡2 conf𝑡3 conf𝑡4
conf𝑡5 conf𝑡6

Figure 14. 𝐹1 score achieved
in each task of the Conference
domains with respect to the
number of labeled examples.

B.1 Evaluation on the types of input
Recall that WebQA takes two types of queries as input: a
question and a set of keywords. In this section, we evaluate
the impact of these two types of inputs on the end-to-end
performance of the tool. Specifically, Figure 13 shows the
average 𝐹1 score for each evaluation domain for the following
two variants of WebQA:
• WebQA-NL: This variant only uses the question but
not the keywords.
• WebQA-KW: This variant only uses the keywords but
not the question.

As we can see from Figure 13, the system works the best
when both modalities of inputs are utilized. We also per-
formed 1-tailed 𝑡-tests to check whether the differences in
performance are significant and obtained p-values less than
0.01 in the comparison to the two variants. Thus, these re-
sults provide evidence that using a combination of questions
and keywords as inputs leads to more accurate results.

B.2 Evaluation on the number of labeled webpages
In this section, we evaluateWebQA’s sensitivity to the num-
ber of labeled examples. For this evaluation, we focus on all
6 tasks in the conference domain and vary the number of
training examples from one to five. Specifically, we obtain
these examples by removing a subset of the labeled webpages
used in our evaluation from Section 8.

Our results are presented in Figure 14. This graph shows
the 𝐹1 score (y-axis) with respect to the number of labeled
examples (x-axis). As shown in Figure 14, while performance
generally gets worse as we reduce the number of examples,
sensitivity to the number of examples varies from task to
task. For example, for the conf𝑡5 task, WebQA is able to
synthesize programs that achieve high 𝐹1 with only a single
labeled example, whereas 𝐹1 score drops significantly for
conf𝑡4 if we remove even one of the examples.

References
[1] Rakesh Agarwal, Ramakrishnan Srikant, et al. 1994. Fast algorithms

for mining association rules. In Proc. of the 20th VLDB Conference.

WebQuestion Answering with Neurosymbolic Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

487–499.
[2] Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri.

2020. Neurosymbolic Reinforcement Learning with Formally Verified
Exploration. In NeurIPS.

[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016.
Learning to compose neural networks for question answering. In
NAACL.

[4] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016.
Neural module networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 39–48.

[5] Tobias Anton. 2005. XPath-Wrapper Induction by generalizing tree
traversal patterns. In Lernen, Wissensentdeckung und Adaptivitt (LWA)
2005, GI Workshops, Saarbrcken. 126–133.

[6] Christopher Baik, Zhongjun Jin, Michael Cafarella, and H. V. Ja-
gadish. 2020. Duoquest: A Dual-Specification System for Expres-
sive SQL Queries. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’20). Associ-
ation for Computing Machinery, New York, NY, USA, 2319–2329.
https://doi.org/10.1145/3318464.3389776

[7] Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom
Kwiatkowski. 2019. Matching the Blanks: Distributional Similarity for
Relation Learning.

[8] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani.
2016. Ringer: web automation by demonstration. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 748–764.

[9] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016.
Optimizing Synthesis with Metasketches (POPL). ACM, 775–788.

[10] Chia-Hui Chang and Shao-Chen Lui. 2001. IEPAD: information extrac-
tion based on pattern discovery. In Proceedings of the 10th international
conference on World Wide Web. 681–688.

[11] Sarah Chasins, Shaon Barman, Rastislav Bodik, and Sumit Gulwani.
2015. Browser record and replay as a building block for end-user web
automation tools. In Proceedings of the 24th International Conference
on World Wide Web. 179–182.

[12] Sarah Chasins and Rastislav Bodik. 2017. Skip blocks: reusing exe-
cution history to accelerate web scripts. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1–28.

[13] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon:
Scraping Distributed Hierarchical Web Data. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology.
963–975.

[14] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020.
Multi-Modal Synthesis of Regular Expressions. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 487–502. https://doi.org/10.1145/3385412.3385988

[15] Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong
Wang, Shiyang Li, Xiyou Zhou, andWilliam YangWang. 2020. TabFact:
A Large-scale Dataset for Table-based Fact Verification. In International
Conference on Learning Representations (ICLR). Addis Ababa, Ethiopia.

[16] Yanju Chen, Ruben Martins, and Yu Feng. 2019. Maximal Multi-Layer
Specification Synthesis. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE 2019). As-
sociation for Computing Machinery, New York, NY, USA, 602–612.
https://doi.org/10.1145/3338906.3338951

[17] Eunsol Choi, Tom Kwiatkowski, and Luke Zettlemoyer. 2015. Scalable
Semantic Parsing with Partial Ontologies. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computational Linguistics,
Beijing, China, 1311–1320. https://doi.org/10.3115/v1/P15-1127

[18] Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo, et al. 2001.
Roadrunner: Towards automatic data extraction from large web sites.

In VLDB, Vol. 1. 109–118.
[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[20] Thomas G Dietterich. 2000. Ensemble methods in machine learning. In
International workshop on multiple classifier systems. Springer, 1–15.

[21] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky,
Sameer Singh, and Matt Gardner. 2019. DROP: A Reading Com-
prehension Benchmark Requiring Discrete Reasoning Over Para-
graphs. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Association
for Computational Linguistics, Minneapolis, Minnesota, 2368–2378.
https://doi.org/10.18653/v1/N19-1246

[22] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenen-
baum. 2018. Learning to infer graphics programs from hand-drawn
images. In Advances in neural information processing systems. 6059–
6068.

[23] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld.
2008. Open Information Extraction from the Web. Commun. ACM 51,
12 (Dec. 2008), 68–74. https://doi.org/10.1145/1409360.1409378

[24] Dayne Freitag. 2000. Machine Learning for Information Extraction in
Informal Domains. Mach. Learn. 39, 2–3 (May 2000), 169–202.

[25] Alexander L Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel
Tarlow. 2017. Differentiable programs with neural libraries. In Inter-
national Conference on Machine Learning. 1213–1222.

[26] Ivan Gavran, Eva Darulova, and Rupak Majumdar. 2020. Interactive
Synthesis of Temporal Specifications from Examples and Natural Lan-
guage. Proc. ACM Program. Lang. 4, OOPSLA, Article 201 (Nov. 2020),
26 pages. https://doi.org/10.1145/3428269

[27] Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ra-
mamirtham, Rajeev Rastogi, Sandeep Satpal, Srinivasan H Sengamedu,
Ashwin Tengli, and Charu Tiwari. 2011. Web-scale information extrac-
tion with vertex. In 2011 IEEE 27th International Conference on Data
Engineering. IEEE, 1209–1220.

[28] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets
Using Input-output Examples. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). ACM, 317–330.

[29] Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and Matt Gardner.
2020. Neural module networks for reasoning over text. In ICLR.

[30] Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu,
and Maosong Sun. 2018. FewRel: A Large-Scale Supervised Few-Shot
Relation Classification Dataset with State-of-the-Art Evaluation.

[31] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane
Boyd. 2020. spaCy: Industrial-strength Natural Language Processing
in Python. https://doi.org/10.5281/zenodo.1212303

[32] Chun-Nan Hsu and Ming-Tzung Dung. 1998. Generating finite-state
transducers for semi-structured data extraction from the web. Infor-
mation systems 23, 8 (1998), 521–538.

[33] Qinheping Hu and Loris D’Antoni. 2018. Syntax-guided synthesis
with quantitative syntactic objectives. In International Conference on
Computer Aided Verification. Springer, 386–403.

[34] Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert
Bastani, Vijay Kumar, Martin Rinard, and Armando Solar-Lezama.
2020. Neurosymbolic Transformers for Multi-Agent Communication.
In NeurIPS.

[35] Arun Iyer, Manohar Jonnalagedda, Suresh Parthasarathy, Arjun Rad-
hakrishna, and Sriram K Rajamani. 2019. Synthesis and machine
learning for heterogeneous extraction. In Proceedings of the 40th ACM

https://doi.org/10.1145/3318464.3389776
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.3115/v1/P15-1127
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.1145/1409360.1409378
https://doi.org/10.1145/3428269
https://doi.org/10.5281/zenodo.1212303

https://doi.org/10.1145/3394486.3403153
https://doi.org/10.18653/v1/2020.acl-main.721
https://doi.org/10.18653/v1/2020.acl-main.721
https://www.aclweb.org/anthology/P09-1113
https://doi.org/10.3115/v1/P14-1037
https://doi.org/10.3115/v1/P15-1142
https://www.aclweb.org/anthology/D07-1075
https://www.aclweb.org/anthology/D07-1075
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N19-1082
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/1908.10084

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 DSL for Web Question Answering
	5 Optimal Neurosymbolic Synthesis
	6 Program Selection via Transductive Learning
	7 Implementation
	8 Evaluation
	8.1 Comparison with Other Tools
	8.2 Evaluation of the Synthesis Engine
	8.3 Effectiveness of the Transductive Learning

	9 Related Work
	10 Conclusion
	Acknowledgments
	A Detailed Derivation of Section 6
	B Additional ablation studies
	B.1 Evaluation on the types of input
	B.2 Evaluation on the number of labeled webpages

	References

